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Myxococcus xanthus is a member of the Myxococcales order within the deltaproteobacterial subdivision. Here, we report the
whole-genome shotgun sequence of the type IV pilus (T4P) defective strain DZF1, which includes many genes found in strain
DZ2 but absent from strain DK1622.
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Myxococcus xanthus is a soil-dwelling deltaproteobacterium
with a genome length of �9.2 Mb. The Myxococcales were

described in the late 19th century for their capacity to produce
macroscopic sporangioles or fruiting bodies (1). Organization
into fruiting bodies requires extracellular signaling and coordina-
tion of two genetically distinct motility systems (2–29). Previ-
ously, the sequence of M. xanthus strain DK1622 was determined
(NC_008095.1) (30). Recently, we sequenced strain DZ2 (31).
These two laboratory strains are noted for behavioral differences
(2, 32, 33), and DZ2 has a larger genome (31).

M. xanthus DZF1 is directly descended from the intermediate
strain DK101, the progenitor for DK1622, and displays reduced
capacity for type IV pilus (T4P)-mediated motility. An earlier
study (34) mapped two point mutations in DK101 to pilQ, which
encodes the T4P secretin (G741S/N762G), accounting for some
phenotypic differences between DZ2 or DK1622 and those strains
harboring the pilQ allele. Because the DZ2 genome contains addi-
tional genes relative to DK1622 and because differences in motility
have been noted, we sequenced DZF1 to determine if the addi-
tional genes were more likely gained by DZ2 or lost from DK1622,
relative to the progenitor.

M. xanthus DZF1 was sequenced at the University of Iowa
DNA Core Facility using 454 GS-FLX titanium technology. Chro-
mosomal DNA was prepared as described previously (31) and
processed for sequencing following established protocols. The re-
sulting sequence comprises 388,477 reads totaling 249 Mb, repre-
senting 27-fold coverage. The genome was assembled de novo into
75 contigs using Newbler software version 2.7. The resulting ge-
nome is approximately 9.28 Mb, similar to that for DZ2 (31), and
is approximately 147 kb larger than the DK1622 genome. The
RAST annotation server (35) predicts a total of 7,704 coding se-
quences (CDS) within the DZF1 genome.

The M. xanthus DZF1 sequence reveals a single nucleotide

polymorphism (SNP) in the pilQ gene, producing a G741S substi-
tution, but lacks the N762G substitution found in DK101 (34).
The impact of these SNPs has not been systematically determined
but affects the interpretation of several previous studies. Indeed,
deletion of mazF (encoding RNA interferase as part of a toxin-
antitoxin system) is synthetic with the pilQ allele in both DZF1
and DK101 to affect cell death (36, 37).

Current analysis is ongoing to determine the role of genes
found in DZF1, but not in DK1622, encoding proteins predicted
to function in transcription, translation, signal transduction, fatty
acid modification, and protein transport. Homologs to these
genes are found in DZ2 as well as other myxobacteria, including
Myxococcus fulvus, Stigmatella aurantiaca, and Sorangium cellulo-
sum. The presence of sequences unique to both DZF1 and DZ2,
while absent from DK1622, has been verified by PCR. Thus, the
differences between DK1622 and both DZ2 and DZF1 are attrib-
utable to a loss of DNA from the DK1622 genome, likely following
UV mutagenesis of DK101, which led to excision of one large
prophage (38, 39) and may have induced additional lesions. We
are investigating several unique sequences found in DZF1 and
DZ2 for their role in M. xanthus biology.

Nucleotide sequence accession number. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number AOBT00000000. The version described
in this paper is the first version.
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